Studi Pengaruh Pembangkit Listrik Tenaga Bayu Kecepatan Variabel Yang Berbasis SCIG Terhadap Tegangan Dan Rugi-Rugi Daya Sistem Distribusi

Muhammad Wisnu Satriyo Agni¹, Rudy Gianto², Junaidi³

Jurusan Teknik Elektro, Fakultas Teknik, Universitas Tanjungpura, Pontianak Jl. Prof. Dr. H. Hadari Nawawi, Pontianak 78124 ¹Thewisnu39xxx@student.untan.ac.id ²rudy.gianto@ee.untan.ac.id

Intisari — Pembangkit listrik tenaga angin adalah salah satu jenis pembangkit listrik yang menggunakan energi angin sebagai sumber utama untuk menghasilkan energi listrik. Penelitian ini menganalisis pengaruh pembangkit listrik tenaga angin terhadap tegangan dan rugi – rugi daya pada kondisi beban ringan, beban puncak, dan beban rata – rata pada sistem distribusi. Data yang akan digunakan adalah data sistem distribusi 33 bus dan data jaringan sistem distribusi. Kemudian secara menyeluruh mengenai perhitungan dari besar tegangan dan rugi – rugi daya sistem distribusi menggunakan *software* MATLAB versi R2016A. Penelitian ini memperoleh hasil tegangan terendah pada sistem distribusi 33 bus terjadi pada bus 18, sehingga bus tersebut yang akan dihubungkan PLTB. Dengan meningkatnya daya mekanik turbin, profil tegangan sistem untuk berbagai kondisi beban semakin baik. Pada sistem distribusi sebelum terhubung PLTB profil tegangan terbaik pada beban ringan sebesar 0,9378 pu dan profil tegangan terburuk pada beban puncak sebesar 0,8671 pu. Setelah sistem terhubung PLTB pada beban ringan menjadi 0,9466 pu, beban puncak menjadi 0,8771 pu, dan beban rata – rata menjadi 0,9131 pu. Dengan terhubungnya sistem dengan PLTB rugi – rugi daya pada beban ringan berkurang sampai dengan 184,8918 kW (Pm = 2,0200 pu), beban puncak berkurang sampai dengan 807,7297 kW (Pm = 3,6880 pu), dan beban rata – rata berkurang sampai dengan 437,8619 kW (Pm = 2,7709 pu).

Kata kunci — pembangkit listrik tenaga bayu, aliran daya, profil tegangan, rugi-rugi daya.

Abstract — Wind power plants are a type of power plant that uses wind energy as the main source to produce electrical energy. This research analyzes the effect of wind power generation on voltage and power losses under light load, peak load, and average load conditions in the distribution system. The data that will be used is 33 bus distribution system data and distribution system network data. Then thoroughly calculate the voltage and power losses of the distribution system using MATLAB software version R2016A. This research obtained the results that the lowest voltage in the 33 bus distribution system occurred on bus 18, so that bus would be connected to thePLTB. As the mechanical power of the turbine increases, the system voltage profile for various load conditions improves. In the distribution system, before the PLTB was connected, the best voltage profile at light load was 0.9378 pu and the worst voltage profile at peak load was 0.8671 pu. After the system is connected to the PLTB, the light load becomes 0.9466 pu, the peak load becomes 0.8771 pu, and the average load becomes 0.9131 pu. By connecting the system with PLTB, power losses at light loads are reduced to 184.8918 kW (Pm = 2.0200 pu), peakloads are reduced to 807.7297 kW (Pm = 3.6880 pu), and average loads - the average decreases to 437.8619 kW (Pm = 2.7709 pu).

Keywords — wind power plant, power flow, voltage profile, power losses.

I. PENDAHULUAN

Saluran distribusi yang panjang akan mengakibatkan penurunan profil tegangan dan terjadinya rugi – rugi daya didalam sistem aliran daya pada sistem tenaga listrik. Semakin jauh dan panjang saluran daya yang akan didistribusikan maka semakin besar rugi – rugi daya yang dikeluarkan, dan juga semakin kecil tegangan yang akan didapat pada bus – bus beban yang tersalurkan daya listrik tersebut. Maka dari itu ada salah satu cara untuk memperbaiki profil tegangan sertamengurangi rugi – rugi daya sistem tenaga listrik yaitu dengan menambahkan dan penempatan sumber tenaga listrik baru lebih dekat dengan beban. Angin merupakan sumber energi berkelanjutan karena bersifat terbarukan, tidak terbatas dan didistribusikan secara luas dan melimpah. Energi angin sebagai kontribusi dalam mengurangi polusi udara, karena digunakan sebagai bahan energi alternatif pengganti bahan fosil dalam sistem pembangkit tenaga listrik [1].

PLTB dapat di klasifikasikan menjadi dua macam, yaitu PLTB kecepatan tetap (atau mendekati konstan) dan PLTB kecepatan Karena dalam variabel. lebih efisien mengekstrasi energi angin, PLTB kecepatan variabel saat ini telah menggantikan PLTB kecepatan tetap. Secara alami, angin tidak dapat diprediksi dan kecepatannya selalu berubah – ubah dan tidak konstan. Sebaliknya untuk kecepatan angin tertentu akan terdapat kecepatan putar generator dimana daya pembangkit listrik adalah maksimal. Karena kecepatan rotasi dari PLTB kecepatan variabel dapat diatur agar sesuai dengan kecepatan angin, maka PLTB jenis ini dapat menangkap energi angindengan cara yang lebih optimal. PLTB dengan kecepatan variabel dapat diwujudkan dengan menggunakan DFIG (Doubly Fed Induction Generator), PMSG (Permanent Magnet Synchronous Generator) (Squirrel Cage atau SCIG Induction Generator).

Walaupun penggunakan energi angin sebagai sumber energi listrik akhir – akhir ini semakin banyak dibeberapa wilayah, namun dengan meningkatnya integrasi PLTB pada sistem tenaga listrik dapat menimbulkan masalah operasional pada sistem tersebut. Hal ini disebabkan oleh sifat alami dari energi angin itu sendiri yaitu bersifat fluktuatif. Hal ini pada gilirannya dapat mengganggu operasional suatu sistem tenaga listrik baik dari sisi keadaan mantapnya (*steady state*) maupun dari sisi kestabilannya. Adanya PLTB pada sistem distribusi tenaga listrik akan mengubah konfigurasi sistem distribusi tersebut yang sebelumnya pasif menjadi aktif. Perubahan ini terjadi karena adanya injeksi daya oleh PLTB. Dengan adanya PLTB, kondisi keadaan mantap sistem seperti tegangan, aliran dan rugi – rugidaya juga akan berubah.

II. TINJAUAN PUSTAKA

Cara paling mudah untuk memenuhi persyaratan format penulisan adalah dengan menggunakan dokumen ini sebagai template. Kemudian ketikkan teks anda ke dalamnya.

A. Teori Aliran Daya Sistem Distribusi

Analisis aliran daya dapat didefinisikan sebagai perhitungan – perhitungan besar dan sudut fasa tegangan dari setiap bus yang ada pada sistem tenaga listrik untuk kondisi pembangkitan dan pembebanan tertentu. Setelah tegangan – tegangan bus ini dihitung, daya yang mengalir pada saluran transmisi serta rugi – rugi dayanya juga akan dapat ditentukan. Perumusan masalah aliran daya dapat diperoleh melalui persamaan yang menggambarkan penampilan dari jaringan sistem tenaga dalam bentuk admitansi. Persamaan ini kemudian digabungkandengan injeksi daya bus sehingga rumusan menghasilkan [2]:

$$S_{Gi} - S_{Li} - V_i \sum_{j=1}^n Y_{ij}^* V_j^* = 0$$
 (1)

dimana:

$$\begin{split} S_{Gi} &= P_{Gi} + j Q_{Gi} \text{: pembangkitan daya pada} \\ & \text{bus} \\ & - i S_{Ii} = P_{Li} + j Q_{Li} \text{: pembebanan daya pada bus} \\ & - i V_i = |V_i| \sqcup \delta_i \text{: tegangan pada bus} - i \\ & Y_{ij} = |Y_{ij}| \sqcup \theta_{ij} \text{: elemen} - ij \text{ dari matriks} \\ & \text{admitansi} \\ & n = j \text{umlah bus} \end{split}$$

Tabel 1. mencantumkan semua besaran (yang diketahui dan tidak diketahui) dalam (1). Beberapa hal penting pada tabel dapat dijelaskan sebagai berikut:

- 1. Karena analisis aliran beban dilakukan pada kondisi beban sistem tertentu, S_L selalu diketahui.
- 2. Y dihitung berdasarkan konfigurasi jaringan dan impedansi saluran.
- 3. Bus gardu induk biasanya dipilih sebagai bus referensi, oleh karena itu, sudut tegangan pada bus ini adalah nol dan besarnya tegangan ditentukan pada nilai tertentu (misalnya 1,0 pu).
- 4. Pada bus beban, S_G adalah nol karena tidak ada pembangkit listrik pada bus ini.

Tabel 1. Besaran yang Diketahui Dan Tidak

No	TipeBus	Besaran Diketahui	Besaran Tidak Diketahui
1	Gardu	SL, Y, V	SG
	Induk		
2	Beban	SL, Y, SG = 0	V

B. Daya Turbin

Turbin berfungsi untuk mengubah energi kinetik angin menjadi energi mekanik. Besarnya daya mekanik turbin ini sangat tergantung pada kecepatan angin dan dapat dihitung melalui :

$$P_{\rm m} = 0.5 \,\rho A V_{\rm w}^3 C_{\rm p} \tag{2}$$

dimana:

$$\begin{split} P_{m} &= \text{daya mekanik turbin dalam Watt} \\ \rho &= \text{kerapatan udara (sekitar 1,225kg/m^3)} \\ A &= \text{luas daerah tangkapan angin} \\ (sweptarea) \text{ dalam m}^2 \\ V_{W} &= \text{kecepatan angin dalam m/detik} \\ C_{p} &= \text{koefisien daya turbin} \end{split}$$

Koefisien daya turbin (Cp) merupakan besarnya proporsi energi kinetik yang dapat diubah menjadi energi atau daya mekanik turbin. Nilai maksimum dari koefisien daya ini adalah 0,593 (atau yang dikenal sebagai koefisien Betz). Dengan kata lain, koefisien daya turbin tidak dapat melebihi 0,593. Hal ini berarti bahwa yang dapat diubah menjadi energi mekanik turbin, maksimum hanyalah sebesar 59,3% dari energi kinetik yang terkandung dalam angin. Perlu dicatat bahwa dalam praktek koefisien daya sebesar 0,5 sangat sulit diperoleh, dan koefisien daya sebesar 0,4 dapat dianggap telah cukup baik. Luas daerah tangkapan angin (A) dapat dihitung melalui rumus – rumus berikut:

 $\mathbf{A} = \mathbf{\pi}\mathbf{R}^2 \tag{3}$

dimana :

R = panjang dari bilah turbin.

Persamaan (2) memperlihatkan bahwa daya turbin adalah sebanding (proporsional) dengan kecepatan angin. Namun demikian, dalam prakteknya, daya turbin ini tidak selalu sebanding dengan kecepatan angin karena adanya pertimbangan teknis dan ekonomis turbin. Variasi tipikal dari daya turbin terhadap kecepatan angin diperlihatkan pada Gbr 1. Pada Gbr 1 Vi, Vr, dan V0 berturut - turut adalah kecepatan cut-in, rated, dan cut- out dari angin, sedangkan Pr adalah daya rating turbin (daya rating adalah daya maksimum yang di ijinkan mengalir pada turbin secara terus menerus). Kecepatan cut- in adalah kecepatan minimum dimana turbin mulai menghasilkan daya mekanik. Turbinangin biasanya memiliki kecepatan cut-in sekitar 3-5 meter/detik. Juga oleh karena adanya pertimbangan teknis dan ekonomis, turbin angin umumnya didesain untuk menghasilkan daya konstan (sebesar daya *rated*) untuk kecepatan angin diatas kecepatan rated. Kecepatan rated ini berkisar antara 10 - 16 meter/detik. Pada kecepatan angin diatas kecepatan *cut-out* (antara 20-30meter/detik), turbin didesain untuk tidak menghasilkan daya (turbin dimatikan atau shut-down). Hal ini dimaksudkan untuk melindungi turbin terhadap pembebanan berlebihan yang dapat merusak turbin tersebut. Penjelasan – penjelasan diatas diringkaskan pada Tabel 1.

Gbr 1. Kurva daya turbin

Kecepatan Angin (V _t)	Daya Turbin (P _m)
$V_t < V_i$	0
$V_i \leq V_t \leq V_r$	Proporsional dengan Vt
$V_r < V_t \le V_0$	Sama dengan daya <i>rated</i> (P _r)
$V_t > V_0$	0 (shut-down)

Tabel 2. Daya Mekanik Turbin

C. Turbin Angin Kecepatan VariabelBerbasis SCIG [7]

1) Konfigurasi Dasar

Gbr 2. menampilkan konfigurasi dasar dari turbin angin kecepatan variabel berbasis SCIG. Dapat dilihat bahwa rotor dari SCIG terhubung dengan turbin angin melalui gearbox guna mengubah kecepatan putaran turbin yang rendah menjadi kecepatanputaran yang lebih tinggi yang dibutuhkan SCIG untuk menghasilkan tenaga listrik. SCIG kemudian akan mengirim daya tersebut (daya aktif) ke sistem tenaga (atau jaringan listrik) melalui konverter AC.

Konverteryang terdiri dari VSC (*Voltage Source Converter*), DC-Link dan VSI (*Voltage Source Inverter*), akan memisahkan kecepatan rotor dari frekuensi sistem sehingga turbin angin dapat beroperasi pada kecepatan putar yang lebih lebar. Biasanya, turbin angin kecepatan variabel berbasis SCIG ini dapat dioperasikan pada rentang kecepatan 50 % di bawah kecepatan sinkron hingga 10 % di atas kecepatan sinkron.

Gbr 2. PLTB berbasis SCIG

Pada Gbr 2 P_m adalah daya turbin, PS dan QS adalah daya aktif dan daya reaktif daristator SCIG, Pg dan Qg adalah daya keluaran aktif dan reaktif dari pembangkit listrik tenaga angin, V_S adalah tegangan stator dari SCIG, dan Vg adalah tegangan dari pembangkit listrik tenaga angin. Perlu diketahui bahwa karena SCIG diisolasi dari sistem tenaga oleh PEC (*Power Elektronic Converter*), maka SCIG tidak dapat dieksitasidari sistem atau jaringan listrik. Pada pembangkit listrik tenaga angin

kecepatan variabel berbasis SCIG, daya reaktif yang diperlukan untuk eksitasi berasal dari konverter sumber tegangan (VSC), dan dikirim melalui stator SCIG. Selanjutnya pada pembangkit listrik tenaga angin jenis ini, inverter sumber tegangan (VSI) biasanya diatur untuk mengendalikan faktor daya atau tegangan, tergantung pada cara pengendalian yang dipilih. Namun, mode kontrol faktor daya lebih sering diadopsi dalam praktik.

2) Rangkaian Equivalen SCIG

Gbr 3 menunjukan rangkaian equivalen SCIG dalam keadaan tunak/mantap (*steady state*). Pada Gbr 3 VR adalah tegangan rangkaian rotor, IR adalah arus rangkaian rotor, VM adalah tegangan pada rangkaian inti atau rangkaian magnetik. Lalu ZS, ZR dan ZM adalah impedansi stator, rotor dan rangkaian inti. Impedansi ini dapat ditentukan menggunakan:

$$Z_{S} = R_{S} + jX_{S}$$

$$Z_{R} = R_{R} + jX_{R}$$

$$Z_{M} = jR_{c}X_{M}/(R_{C} + jX_{M})$$
(4)

dimana:

RS, RR dan RC = Resistansi stator, rotor dan rangkaian inti (Ω)

XS, XR dan XM = Reaktansi stator, rotor dan rangkaian inti (Ω)

Berdasarkan dari Gbr 3, daya listrik stator SCIG dan daya mekanik turbin dapat dirumuskan sebagai berikut:

$$\begin{split} S_{\mathsf{S}} &= V_{\mathsf{S}} I_{\mathsf{S}}^* \qquad (5) \\ P_{\mathsf{m}} &= V_{\mathsf{R}} I_{\mathsf{R}}^* \qquad (6) \end{split}$$

Gor 5. Rangkalan equivalen dari SCIG

Untuk memudahkan pengembanganmodel matematis dari pembangkit listrik tenaga angin, maka daya mekanik turbin di atas juga dapat dinyatakan dalam tegangan dan daya stator yang penurunannya dapat dijelaskan sebagai berikut:

Berdasarkan Gbr 3 tegangan rotor, arusrotor dan arus rangkaian magnetik dapat dirumuskan sebagai berikut:

$$V_{\rm R} = V_{\rm S} + I_{\rm S} Z_{\rm S} + I_{\rm R} Z_{\rm R} \tag{7}$$

$$I_{R} = I_{S} + I_{M} \tag{8}$$

$$I_{M} = \frac{v_{M}}{z_{M}} = \frac{v_{S} + I_{S} z_{S}}{z_{M}}$$
(9)

Dengan menggunakan (9) pada (8), arus rotor menjadi:

$$I_{R} = V_{S} \frac{1}{Z_{M}} + I_{S} \frac{Z_{S} + Z_{M}}{Z_{M}}$$
 (10)

Kemudian, dengan menggunakan (10) pada (7), tegangan rotor menjadi:

$$V_{R} = V_{S} \left(1 + \frac{Z_{R}}{Z_{M}} \right) + I_{S} \left(Z_{S} + Z_{R} + \frac{Z_{S}Z_{R}}{Z_{M}} \right)$$
(11)

Dengan mensubstitusi (10) dan (11) pada (6) dan menyusun ulang hasilnya, daya mekanik turbin dapat ditulis sebagai berikut:

$$\begin{split} P_{m} &= V_{S}V_{S}^{*}\left(\frac{1}{Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}Z_{M}^{*}}\right) \\ &+ V_{S}I_{S}^{*}\left(1 + \frac{Z_{S}^{*}}{Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}} + \frac{Z_{S}^{*}Z_{R}}{Z_{M}Z_{M}^{*}}\right) \\ &+ V_{S}^{*}I_{S}\left(\frac{Z_{S}}{Z_{M}^{*}} + \frac{Z_{S}Z_{R}}{Z_{M}Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}}\right) \\ &+ I_{S}I_{S}^{*}\left(\frac{Z_{S} + Z_{R} + }{Z_{M}^{*} + \frac{Z_{S}Z_{R}}{Z_{M}} + \frac{Z_{S}Z_{R}}{Z_{M}} + \frac{Z_{S}Z_{R}^{*}}{Z_{M}Z_{M}^{*}} + \frac{Z_{S}^{*}Z_{R}}{Z_{M}}\right) \end{split}$$
(12)

Lebih lanjut, dengan menggunakan (5) pada (12), daya mekanik turbin dapat dirumuskan menjadi:

$$P_{\rm m} = V_{\rm S}V_{\rm S}^{*}\left(\frac{1}{Z_{\rm M}^{*}} + \frac{Z_{\rm R}}{Z_{\rm M}Z_{\rm M}^{*}}\right) + S_{\rm S}\left(1 + \frac{Z_{\rm S}^{*}}{Z_{\rm M}^{*}} + \frac{Z_{\rm R}}{Z_{\rm M}} + \frac{Z_{\rm S}^{*}Z_{\rm R}}{Z_{\rm M}Z_{\rm M}^{*}}\right) + S_{\rm S}^{*}\left(\frac{Z_{\rm S}}{Z_{\rm M}^{*}} + \frac{Z_{\rm S}Z_{\rm R}}{Z_{\rm M}Z_{\rm M}^{*}} + \frac{Z_{\rm R}}{Z_{\rm M}}\right) + \frac{S_{\rm S}S_{\rm S}^{*}}{V_{\rm S}V_{\rm S}^{*}}\left(\frac{Z_{\rm S} + Z_{\rm R} + Z_{\rm R}}{Z_{\rm M}^{*}} + \frac{Z_{\rm S}Z_{\rm R}}{Z_{\rm M}}\right)$$
(13)

Atau

$$P_{m} = (V_{S}V_{S} * Z_{T1}) + (S_{S}Z_{T2}) + (S_{S} * Z_{T3}) + (\frac{S_{S}S_{S} *}{V_{S}V_{S} *} Z_{T4})$$
(14)

Dimana:

$$Z_{T1} = \frac{1}{Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}Z_{M}^{*}}$$

$$Z_{T2} = 1 + \frac{Z_{S}^{*}}{Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}} + \frac{Z_{S}^{*}Z_{R}}{Z_{M}Z_{M}^{*}}$$

$$Z_{T3} = \frac{Z_{S}}{Z_{M}^{*}} + \frac{Z_{S}Z_{R}}{Z_{M}Z_{M}^{*}} + \frac{Z_{R}}{Z_{M}^{*}}$$

$$Z_{T4} = Z_{S} + Z_{R} + \frac{Z_{S}Z_{S}^{*}}{Z_{M}^{*}}$$

$$+ \frac{Z_{S}Z_{R}}{Z_{M}} + \frac{Z_{S}Z_{S}^{*}Z_{R}}{Z_{M}Z_{M}^{*}} + \frac{Z_{S}^{*}Z_{R}}{Z_{M}^{*}}$$
(15)

Model PEC (*Power Electronic Converter*) Gbr 4 memperlihatkan model PEC dari PLTB. Model PEC tersebut valid untuk studialiran daya keadaan tunak. Seperti diuraikan sebelumnya, SCIG mengirimkan daya ke jaringan melalui sistem PEC. Dapat juga dilihat dari Gbr 4 bahwa SCIG dieksitasi dari VSC melalui stator. Besarnya daya reaktif yang diperlukan untuk eksitasi adalah Qs. Dalam pengendalian faktor daya, VSI diatur untuk mengatur daya reaktif dan mengatur faktor daya pada nilai yang ditentukan atau diinginkan. Jumlah daya reaktif yang dibutuhkan untuk hal ini adalah Qg. Perlu diketahui bahwa pada Gambar 2.4 Vs juga merupakan tegangan VSC dan Vg juga merupakan tegangan VSI. Dengan melihat Gbr 4, maka rugi – rugi daya di PEC dapat ditentukan dengan menggunakan rumus:

$$P_{loss,pec} = (V_{s} - V_{g})I_{c}^{*}$$

= $(1 - \eta_{c})P_{s}$ (16)

dimana:

IC & ηc adalah dari arus dan efisiensi PEC.

Oleh karena:

$$I_{c}^{*} = \frac{P_{g}}{V_{g}} = \frac{\eta_{c}P_{s}}{V_{g}}$$
(17)

Maka, dengan mensubstitusikan (17) pada (16), rugi – rugi daya PEC menjadi:

$$P_{\text{loss,pec}} = (V_{\text{S}} - V_{\text{g}}) \frac{\eta_{\text{c}} P_{\text{S}}}{V_{\text{g}}}$$
$$= (1 - \eta_{\text{c}}) P_{\text{S}}$$
(18)

Dengan menggunakan (18), dapat diperoleh persamaan berikut yang menghubungkan tegangan VSC dan tegangan VSI:

$$V_{g} = \eta_{c} V_{s} \tag{19}$$

Gbr 4. Model PEC untuk studi aliran daya

3) Model PLTB Untuk Analisa Aliran Daya

Berdasarkan (14) dan (19), model aliran daya keadaan tunak dari PLTB kecepatan variabel berbasis SCIG dapat dirumuskan sebagai berikut:

$$\frac{V_g V_g^*}{\eta_c^2} Z_{T1} + S_S Z_{T2} + S_S^* Z_{T3} + \frac{\eta_c^2 S_S S_S^*}{v_g v_g^2} Z_{T3} - P_m = 0$$
(20)

Untuk mendapatkan solusi aliran daya dari sistem distribusi yang mengandung PLTB kecepatan variabel bebasis SCIG, (1) dan (20) harus diselesaikan secara bersamaan. Tabel 3 menunjukan rincian variabel dalam rumusan lengkap masalah aliran daya. Perlu diketahui bahwa dalam perumusan tersebut pada bus PLTB berlaku:

$$\mathbf{P}_{\mathbf{G}} = \mathbf{P}_{\mathbf{g}} = \mathbf{\eta}_{\mathbf{c}} \mathbf{P}_{\mathbf{S}} \tag{21}$$

$$Q_{G} = Q_{g} = P_{g} \tan \phi = \eta_{c} P_{S} \tan \phi$$
 (22)

dimana : φ adalah sudut faktor daya PLTB.

Tabel 3. Besaran Yang Diketahui Dan Tidak Diketahui untuk Sistem Yang Mengandung PLTB

No	Tipe Bus	Diketahui	Tidak Diketahui
1	Gardu Induk	S_L, Y, V	$\mathbf{S}_{\mathbf{G}}$
2	Beban	$S_L, Y, S_G = 0$	V
3	PLTB	$S_L, Y, R_S, X_S, X_R, R_R, P_m, \phi, \\\eta_c$	$\mathbf{V} = \mathbf{V}_{g}, \mathbf{S}_{S}$

D. Solusi Aliran Daya Dengan Metode Newton–Raphson

Metode Newton-Raphson adalah metode sering paling digunakan vang untuk menyelesaikan suatu sistem persamaan non linier. Dalam mencari solusi, metode Newton-Raphson menggunakan teknik iteratif, dengan teknik iteratif ini, pencarian solusi dimulai dengan estimasi awal untuk variabel yang ingin dicari. Estimasi tersebut kemudian diperbaiki secara berurutan sampai solusi yang diinginkan diperoleh. Apabila solusinya telah didapat, maka dikatakan bahwa solusinya telah konvergen. Berikut adalah penjelasan mengenai penggunakan metode tersebut pada sistem persamaan non-linier umum. Misalkan set persamaan non – linier dengan jumlah persamaan n diberikan oleh:

$$F(X) = \begin{bmatrix} f_1(X_1, X_2, \dots, X_3) \\ f_2(X_1, X_2, \dots, X_3) \\ \vdots \\ f_n(X_1, X_2, \dots, X_3) \end{bmatrix} = 0$$
(23)

dimana:

 $X = [X1 X2 ... X3]^T$ adalah variabel yang akan dicari.

Langkah iteratif dari metode Newton– Raphson dalam mencari solusi adalah dengan menyelesaikan persamaan secara berurutan sebagai berikut:

$$X^{(k+1)} = X^{(k)} + \Delta X^{(k)}$$
(24)

Dimana :

$$\Delta X^{(k)} = - [J(X^{(k)})]^{-1} F(X^{(k)})$$
⁽²⁵⁾

Pada persamaan (25), J(X) merupakan jacobian dari F(X) dan dihitung melalui:

$$J(X) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$
(26)

Dengan demikian, langkah – langkah dari metode Newton–Raphson dalam mencari solusi adalah sesuai algoritma berikut:

- Langkah 1: Set k = 0, dan tentukan estimasi awal untuk solusi X(K) dan toleransi ε.
- Langkah 2: Cek apakah maks |F(X(K))| < ε, jika benar, stop dan solusinya adalah (X(k)) jika salah, lanjutkan ke langkah Langkah 3: Hitung jacobian J(X(k)) dan
- 3. $\Delta X(k)$ melalui (26).
- 4. Langkah 4: Hitung X(k+1) atau perbaiki nilai estimasi melalui (24).
- 5. Langkah 5: Set k = k + 1, dan kembali ke langkah 2.

Matriks jacobian (24) dapat dihitung secara analitik ataupun numerik. Namun demikian, metode numerik lebih sering digunakan karena lebih mudah dan efisien. Berikut adalah formulasi untuk menghitung J(X) pada titik X*:

$$J(X *) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_n}{\partial x_1} & \frac{\partial f_n}{\partial x_2} & \cdots & \frac{\partial f_n}{\partial x_n} \end{bmatrix}$$
(27)

Elemen – elemen dari J(X*) dihitung melalui rumus – rumus berikut:

Baris pertama:

$$\begin{array}{l} \frac{\partial}{\partial x_{1}} f_{1}(X*) \approx \frac{f_{1}(x_{1}^{*} + h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*}) - f_{1}(x_{1}^{*} - h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*})}{2h} \\ \frac{\partial}{\partial x_{2}} f_{1}(X*) \approx \frac{f_{1}(x_{1}^{*} + h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*}) - f_{1}(x_{1}^{*} - h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*})}{2h} \\ \vdots \\ \frac{\partial}{\partial x_{n}} f_{1}(X*) \approx \frac{f_{1}(x_{1}^{*} + h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*}) - f_{1}(x_{1}^{*} - h.x_{2}^{*}.x_{3}^{*}...x_{h}^{*})}{2h} \\ \vdots \\ \vdots \\ 2h \\ \vdots \\ \vdots \\ 2h \\ \end{array} \right)$$
(28)

Baris Kedua

$$\begin{array}{c} \frac{\partial}{\partial x_{1}} f_{2}(X*) \approx \frac{f_{1}(x_{1}^{*} + h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*}) - f_{1}(x_{1}^{*} - h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*})}{2h} \\ \frac{\partial}{\partial x_{2}} f_{2}(X*) \approx \frac{f_{1}(x_{1}^{*} + h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*}) - f_{1}(x_{1}^{*} - h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*})}{2h} \\ \vdots \\ \frac{\partial}{\partial x_{n}} f_{2}(X*) \approx \frac{f_{1}(x_{1}^{*} + h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*}) - f_{1}(x_{1}^{*} - h, x_{2}^{*}, x_{3}^{*} \dots, x_{n}^{*})}{2h} \\ \end{array} \right)$$
(29)

Baris Ke-n

$$\begin{array}{l} \frac{\partial}{\partial x_{1}} f_{n}(X \ast) \approx \frac{f_{1}(x_{1}^{\ast} + h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast}) - f_{1}(x_{1}^{\ast} - h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast})}{2h} \\ \frac{\partial}{\partial x_{2}} f_{n}(X \ast) \approx \frac{f_{1}(x_{1}^{\ast} + h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast}) - f_{1}(x_{1}^{\ast} - h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast})}{2h} \\ \vdots \\ \frac{\partial}{\partial x_{n}} f_{n}(X \ast) \approx \frac{f_{1}(x_{1}^{\ast} + h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast}) - f_{1}(x_{1}^{\ast} - h, x_{2}^{\ast}, x_{3}^{\ast} \ldots, x_{n}^{\ast})}{2h} \\ \end{array} \right)$$

$$(30)$$

Pada formula – formula di atas, h merupakan konstanta dengan nilai numerik yang cukup kecil (misalkan; 0,01; 0,001; atau 0,0001).

E. Perhitungan Rugi–Rugi Daya Saluran

Bila dimisalkan bahwa saluran yang menghubungkan bus p dan q memiliki admitansi seri ypq dan admitansi shunt total ypq, maka arus yang mengalir pada saluran tersebut akan diberikan oleh:

$$I_{pq} = (V_p - V_q) y_{pq} + V_p \frac{y'_{pq}}{2}$$
(31)

Sehingga, aliran daya dari bus p ke q diberikan oleh:

$$P_{pq} + jQ_{pq} = V_p I_{pq}^* = V_p \left[\left(V_p - V_q \right)^* y_{pq}^* + V_p^* \frac{y_{pq}^*}{2} \right]$$
(32)

Dengan cara yang sama, aliran daya dari bus q ke p diberikan oleh:

$$P_{qp} + jQ_{qp} = V_q I_{qp}^* = V_q \left[\left(V_q - V_p \right)^* y_{pq}^* + V_q^* \frac{y_{pq}^*}{2} \right]$$
(33)

III. METODOLOGI PENELITIAN

Metode simulasi yang digunakan untuk analisis tegangan dan rugi–rugi daya pada jaringan sistem ini dapat dilihat pada diagram alir Gbr 5 sebagai berikut:

A. Data Jaringan Sistem Distribusi & Beban Sistem Distribusi 33 Bus

Berikut merupakan data-data yang akan digunakan dalam proses simulasi.

Tabel 4	Data	Iaringan	Sistem	Distribusi
1 auci 4.	Data.	aimgan	Sistem	Distribusi

	Bus	Bus	R	X
No	Kirim	Terima	(Ohm)	(Ohm)
1	1	2	0,0922	0,0470
2	2	3	0,4930	0,2511
3	3	4	0,3660	0,1864
4	4	5	0,3811	0,1941
5	5	6	0,8190	0,7070
6	6	7	0,1872	0,6188
7	7	8	1,7114	1,2351
8	8	9	1,0300	0,7400
9	9	10	1,0440	0,7400
10	10	11	0,1966	0,0650
11	11	12	0,3744	0,1238
12	12	13	1,4680	1,1550
13	13	14	0,5416	0,7129
14	14	15	0,5910	0,5260
15	15	16	0,7463	0,5450
16	16	17	1,2890	1,7210
17	17	18	0,7320	0,5470
18	2	19	0,1640	0,1565
19	19	20	1,5042	1,3554
20	20	21	0,4095	0,4784
21	21	22	0,7089	0,9373
22	3	23	0,4512	0,3083

	Bus	Bus	R	X
No	Kirim	Terima	(Ohm)	(Ohm)
23	23	24	0,8980	0,7091
24	24	25	0,8960	0,7011
25	6	26	0,2030	0,1034
26	26	27	0,2842	0,1034
27	27	28	1,0590	0,9337
28	28	29	0,8042	0,7006
29	29	30	0,5075	0,2585
30	30	31	0,9744	0,9630
31	31	32	0,3105	0,3619
32	32	33	0,3410	0,5320

Tabel 5. Data Beban Sistem Distribusi 33 Bus

No	Beban Ringan		Bel	ban	Be	eban
			Pun		Rata	– Rata
	кW	KVAR	kW	kvak	KW	KVAR
2	67	39	135	78	100	60
3	61	26	121	52	90	40
4	81	52	162	104	120	80
5	40	20	81	39	60	30
6	40	13	81	26	60	20
7	135	65	269	130	200	100
8	135	65	269	130	200	100
9	40	13	81	26	60	20
10	40	13	81	26	60	20
11	30	20	61	39	450	30
12	40	23	81	46	60	35
13	40	23	81	46	60	35
14	81	52	162	104	120	80
15	40	7	81	13	60	10
16	40	13	81	26	60	20
17	40	13	81	26	60	20
18	61	26	121	52	90	40
19	61	26	121	52	90	40
20	61	26	121	52	90	40
21	61	26	121	52	90	40
22	61	26	121	52	90	40
23	61	33	121	65	90	50
24	283	130	565	261	420	200
25	283	130	565	261	420	200
26	40	16	81	33	60	25
27	40	16	81	33	60	25
28	40	13	81	26	60	20
29	81	46	162	91	120	70
30	135	391	269	783	200	600
31	101	46	202	91	150	70
32	141	65	283	130	210	100
33	40	26	81	52	60	40
Total	2500	1500	5000	3000	3715	2300

No	Perangkat	Keterangan
1	Turbin	Panjang bilah turbin: 60meter Rating Daya: 5 MW Kecepatan; Cut-in: 5 m/s; Rated: 12 m/s; Cut-out: 23 m/s
2	Gearbox	Rasio: 1/75
3	Generator	Tipe: SCIG Rating Daya: 5 MW Jumlah Kutub: 4 pasang Tegangan: 690 Volt Resistansi/Reaktansi (pu): RS = 0,01; RR = 0,1; RC = 500; XS = 0,1; XR = 0,2; Xm = 50
4	PEC	Efisiensi = 95%
5	Transforma tor Step– Up	Impedansi (pu*) = j0,1

Tabel 6. Data PLTB

B. Studi Pengaruh PLTB Terhadap Tegangan Dan Rugi-Rugi Daya

Setelah diperoleh data – data, maka langkah selanjutnya simulasi jaringan sistem distribusi dengan software MATLAB versi R2016A. Proses simulasi dilakukan dengan menghitung profil tegangan pada setiap kondisi beban saat sebelum terhubung dengan PLTB. Kemudian simulasi jaringan sistem yang dihubungkan dengan PLTB untuk diperoleh tegangan dan rugi-rugi daya pada setiap daya mekanik turbin atau kecepatan angin.

C. Analisa Hasil Perhitungan

Berdasarkan hasil simulasi tersebut, kemudian dilakukan analisis mengenai pengaruh PLTB setelah terhubung dengan jaringan sistem distribusi sehingga dapat diketahui profil tegangan dan rugi-rugi daya pada setiap kondisi beban.

IV. HASIL DAN PEMBAHASAN

A. Perhitungan Daya Turbin

Pada Tabel 7 memperlihatkan hasil perhitungan besar daya mekanik turbin untuk kecepatan angin mulai dari 5 m/s sampai dengan 12 m/s. Dalam perhitungan tersebut, kerapatan udara dankoefisien performansi turbin berturut – turut diasumsikan sebesar 1,225 kg/m3 dan 0,40.

Tabel 7. Daya Turbin				
Kecepatan	Daya Turbin			
Angin (m/s)	(MW)			
5	0,3464			
6	0,5985			
7	0,9504			
8	1,4187			
9	2,0200			
10	2,7709			
11	3,6880			
12	4,7881			

B. Hasil Simulasi Sebelum Terhubung PLTB

Pada Gbr 6 memperlihatkan grafik profil tegangan sistem tanpa PLTB. Terlihat bahwa grafik profil tegangan terbaik terjadi pada saat beban ringan, sedangkan grafik profil tegangan terburuk terjadi pada saat beban puncak.

Pada beban ringan, beban puncak, dan beban rata – rata, masing – masing memiliki besar tegangan 0,9378 pu pada beban ringan, pada beban puncak 0,8671 pu, dan pada beban rata – rata 0, 9037 pu. Untuk berbagai kondisi beban tersebut berada pada bus 18 yang kemudian akan dihubungkan dengan PLTB pada Gambar 4.2 sampai dengan Gambar 4.4.

Gbr 6. Tegangan bus sebelum terhubung PLTB Sumber: Hasil simulasi

C. Hasil Simulasi Setelah Terhubung PLTB

Pada Gbr 7 sampai dengan Gbr 9 memperlihatkan grafik profil tegangan sistem dengan PLTB. Terlihat bahwa profil tegangan relatif semakin membaik dengan meningkatnya daya mekanik turbin. Grafik hasil setelah dihubungkan PLTB memperlihatkan tegangan menjadi lebih baik pada beban ringan menjadi 0,9466 pu, beban puncak menjadi 0,8771 pu, dan beban rata – rata menjadi 0,9131 pu.

Namun demikian, pada Gambar 7 dan Gambar 9 untuk beban ringan dengan Pm = 3,6880 pu, dan beban rata – rata dengan Pm = 4,7881 pu kasusnya tidak demikian, hal ini disebabkan karena injeksi daya aktif oleh PLTB lebih besar dari kebutuhan daya reaktif PLTB.

Gbr 7. Tegangan bus setelah terhubung PLTB (Beban Ringan) Sumber: Hasil simulasi

Gbr 8. Tegangan bus setelah terhubung PLTB (Beban Puncak) Sumber: Hasil simulasi

Gbr 9. Tegangan bus setelah terhubung PLTB (Beban Rata - Rata) Sumber: Hasil simulasi

Grafik tegangan pada PLTB (bus 18) terhadap daya mekanik turbin untuk berbagai kondisi beban diperlihatkan pada Gbr 10, Gbr 11, dan Gbr 12. Terlihat tegangan untuk setiap kondisi beban menghasilkan tegangan yang semakin meningkat atau membaik dengan semakin besar daya mekanik turbin dari PLTB, yaitu pada daya mekanik mulai 0,3464 pu sampai dengan 4,7881 pu profil tegangannya lebih baik daripada sistem sebelum terhubung PLTB.

Gbr 10. Tegangan bus 18 (Beban Ringan) Sumber: Hasil simulasi

Gbr 11. Tegangan bus 18 (Beban Puncak) Sumber: Hasil simulasi

Gbr 12. Tegangan bus 18 (Beban Rata - Rata) Sumber: Hasil simulasi

Pada Gbr 13 sampai dengan Gbr 15 memperlihatkan grafik rugi – rugi daya jaringan distribusi terhadap daya mekanik turbin untuk berbagai kondisi beban. Terlihat bahwa pada kondisi beban puncak dengan meningkatnya daya turbin maka rugi – rugi daya tersebut semakin berkurang. Namun demikian, pada kondisi beban ringan dan beban rata – rata kasusnya tidak selalu demikian. Rugi – rugi daya jaringan distribusi setelah terhubung dengan PLTB.

Pada beban ringan rugi – rugi daya berkurang sampai dengan 184,8918 kW pada Pm = 2.7709 pu, untuk beban puncak rugi – rugi daya berkurang sampai dengan 807,7297 kW pada Pm = 3,6880 pu, dan untuk beban rata – rata rugi – rugi berkurang sampai dengan 437,8619 kW pada Pm = 2,7709 pu. Namun pada masing – masing beban memiliki kasus yang berbeda yaitu terjadi kenaikan rugi – rugi daya pada Pm = 2,7709 pu pada beban ringan, beban puncak pada Pm = 4,7881 pu, dan beban rata– rata pada Pm = 3,6880 pu.

Hal ini terjadi disebabkan karena adanya kebutuhan daya reaktif relatif tinggi oleh PLTB.

Gbr 13. Rugi – rugi daya pada beban ringan Sumber: Hasil simulasi

Gbr 14. Rugi – rugi daya pada beban puncak Sumber: Hasil simulasi

Gbr 15. Rugi – rugi daya pada beban rata – rata Sumber: Hasil simulasi

V. PENUTUP

A. Kesimpulan

Berdasarkan hasil penelitian dan analisa pembahasan yang telah diuraikan, maka dapat ditarik beberapa kesimpulan yang dapat diambil dari studi pengaruh pembangkit listrik tenaga bayu kecepatan variabel yang berbasis SCIG terhadap tegangan dan rugi – rugi daya sistem distribusi adalah sebagai berikut:

- 1. Keadaan suatu sistem saat sebelum terhubung PLTB profil tegangan terbaik pada kondisi beban ringan dan profil tegangan terburuk atau yang kurang baik pada kondisi beban puncak.
- Untuk profil tegangan terendah pada sistem distribusi untuk berbagai kondisi beban terjadi di Bus 18, sehingga bus tersebut yang akan dihubungkan dengan PLTB. Untuk kondisi beban ringan dan beban puncak setelah terhubung dengan PLTB dapat dilihat bahwa dengan semakin meningkatnya daya mekanik turbin dari PLTB, terlihat profil tegangan sistem untuk berbagai kondisi beban semakin membaik.
- 3. Sistem yang telah terhubung dengan PLTB dapat mengurangi rugi – rugi daya pada jaringan distribusi, diantaranya pada beban ringan rugi – rugi daya berkurang sampai dengan 184,8918 kW pada Pm = 2.7709 pu, beban puncak rugi – rugi daya berkurang sampai dengan 807,7297 kW pada Pm = 3,6880 pu, dan untuk beban rata – rata rugi – rugi daya berkurang sampai dengan 437,8619 kW pada Pm = 2,7709 pu.
- 4. Šistem distribusi tanpa PLTB pada beban ringan memilik tegangan sebesar 0,9378 pu, beban puncak 0,8671 pu, dan beban rata – rata 0,9037 pu. Setelah sistem terhubung dengan PLTB memperbaiki

tegangan pada beban ringan manjadi 0,9466 pu, beban puncak 0,8771 pu, dan beban rata – rata 0,9131 pu.

5. Kenaikan rugi – rugi daya saat kondisi beban ringan pada Pm = 2,7709 pu, disebabkan karena adanya kebutuhan daya reaktif relatif tinggi oleh PLTB.

B. Saran

- 1. Dapat dilakukan penelitian lebih lanjut terhadap kenaikan rugi – rugi daya yang terjadi pada beban ringan, beban puncak, dan beban rata – rata.
- 2. Adanya penelitian lebih lanjut terhadap perubahan pada daya aktif dan kebutuhan daya reaktif pada Gardu Induk saat sebelum dan sesudah terhubung PLTB.

UCAPAN TERIMA KASIH

Penulis mengucapkan terima kasih kepada seluruh dosen dan sivitas akademika Fakultas Teknik Universitas Tanjungpura telah memberikan ilmu selama yang perkuliahan serta memberikan arahan dan bimbingan selama proses penulisan penelitian ini. Penulis juga mengucapkan terima kasih kepada laboratorium sistem distribusi Fakultas Teknik Universitas Tanjungpura Pontianak yang telah memandu pengumpulan data penelitian. Penulis berharap penelitian ini dapat bermanfaat dan digunakan sebagaimana mestinya.

REFERENSI

- [1] P. Maidi Saputra, "Studi Analisis Potensi Energi Angin Sebagai Sebagai Pembangkit Listrik Tenaga Angin Di Kawasan Meulaboh," *Jurnal Mekanova*, vol. I, no. 1, p. 33, 2015.
- [2] R. Gianto, "T-Circuit Model of Asynchronous Wind Turbine for Distribution System Load Flow Analysis," *International Energy Jurnal*, vol. 19, no. 1, pp. 77-88, 2019.
- [3] Subrata, "PEMODELAN PEMBANGKIT LISTRIK TENAGA ANGIN 1kW BERBANTUAN SIMULINK MATLAB," Jurnal Teknik Elektro, vol. 2, no. 1, p. 1,2014.
- [4] M. Iqbal, "Pembuatan Sistem Pembangkit Listrik Tenaga Angin Berkapasitas 100 Watt," *Jurnal Teknik Elektro*, vol. 2, no. 3, p. 1, 2018.

- [5] S. Bahari, "Analisis Pembangkit Listrik Tenaga Angin Di Desa Sungai Nibung Kecamatan Teluk Pakedai Kabupaten Kubu Raya," *Jurnal Teknik Elektro*, vol. 2, no. 1, p. 1, 2015.
- [6] P. H. M. R. N. Muhammad Adam, "Analisa Pengaruh Perubahan Kecepatan Angin Pada Pembangkit Listrik Tenaga Angin (PLTA) Terhadap Daya Yang Dihasilkan Generator DC," *Jurnal Teknik Elektro*, vol. 2, no. 1, pp. 30-35, 2019.
- [7] R. G. Ade Elbani, "Modeling of SCIG-Based Variable Speed Wind Turbine in Power Factor Control Mode for Load Flow Analysis," *European Journal of Electrical Engineering and Computer Science*, vol. 5, no. 6, pp. 43-48, 2021.